Efficient Random Walk Inference with Knowledge Bases

نویسندگان

  • Ni Lao
  • Teruko Mitamura
  • Tom Mitchell
  • Wenyun Zuo
چکیده

Relational learning is a subfield of artificial intelligence, that learns with expressive logical or relational representations. In this thesis, I consider the problem of efficient relational learning. I describe a new relational learning approach based on path-constrained random walks, and demonstrate, with extensive experiments on IR and NLP tasks, how relational learning can be applied at a scale not possible before. This scalability is made possible by defining a family of easy-to-learn features, fast random walk methods, and distributed computing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporating Vector Space Similarity in Random Walk Inference over Knowledge Bases

Much work in recent years has gone into the construction of large knowledge bases (KBs), such as Freebase, DBPedia, NELL, and YAGO. While these KBs are very large, they are still very incomplete, necessitating the use of inference to fill in gaps. Prior work has shown how to make use of a large text corpus to augment random walk inference over KBs. We present two improvements to the use of such...

متن کامل

Combining Vector Space Embeddings with Symbolic Logical Inference over Open-Domain Text

We have recently shown how to combine random walk inference over knowledge bases with vector space representations of surface forms, improving performance on knowledge base inference. In this paper, we formalize the connection of our prior work to logical inference rules, giving some general observations about methods for incorporating vector space representations into symbolic logic systems. A...

متن کامل

Random Walk Inference and Learning

We consider the problem of performing learning and inference in a large scale knowledge base containing imperfect knowledge with incomplete coverage. We show that a soft inference procedure based on a combination of constrained, weighted, random walks through the knowledge base graph can be used to reliably infer new beliefs for the knowledge base. More specifically, we show that the system can...

متن کامل

Towards First-Order Random Walk Inference

Path Ranking Algorithm (PRA) addresses classification and retrieval tasks using learned combinations of labeled paths through a graph. Unlike most Statistical Relational Learning (SRL) methods, PRA scales to large data sets but uses a limited set of paths in its models—ones that correspond to short first order rules with no constants. We consider extending PRA in two ways—learning paths that co...

متن کامل

Mining Inference Formulas by Goal-Directed Random Walks

Deep inference on a large-scale knowledge base (KB) needs a mass of formulas, but it is almost impossible to create all formulas manually. Data-driven methods have been proposed to mine formulas from KBs automatically, where random sampling and approximate calculation are common techniques to handle big data. Among a series of methods, Random Walk is believed to be suitable for knowledge graph ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012